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In this work, a boundary layer based integral approach is employed for analyzing the coupled problem of
electro-magneto-hydrodynamic convection and melting of an electrically conducting material. The melt-
ing process is assumed to occur on a semi-infinite flat horizontal slab. The simultaneous non-linear ordin-
ary differential equations, originated out of the boundary layer analysis, are solved by employing the
fourth order Runge–Kutta method, in a novel iterative framework. Simulation studies are executed for
representative systems of materials, with a wide range of variation of processing parameters. Effects of
melt superheat and the strengths of magnetic and electric fields on the melting process are analyzed
in details. Fundamental physical principles are subsequently outlined for controlling the melting process
through combined electrical and magnetic fields, on the employment of judicious combinations of the
relevant operating parameters.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The use of external magnetic and electric fields has now become
widespread in the metal and semiconductor industries for control-
ling the transport phenomena during melting/solidification pro-
cesses, resulting in improved processing capabilities and better
product qualities. The electromagnetic fields may be configured
to provide effective means of melt stirring, which is likely to be
useful in generating a desired melt mixing pattern during semicon-
ductor crystal growth or producing a strong turbulent shear flow to
induce grain refinement effects during casting processes. A direct
current magnetic field, on the other hand, may also be used to sup-
press undesirable turbulent fluctuations in melt flows, in order to
minimize the manufacturing defects in certain applications. Keep-
ing such wide-ranging implications in view, extensive research ef-
forts have been directed towards developing a fundamental
understanding on the physics of electro-magneto-hydrodynamic
convective flows in molten materials and designing effective mea-
sures to control and optimize the pertinent materials processing
operations.

The first attempt of deliberately employing magnetic fields to
benefit materials processing operations involving melting/solidifi-
cation dates back to the early 1930s [1,2]. At present, the use of
magnetic fields has become a standard industrial practice in the
solidification processing of electrically conducting fluids such as
molten metals and semiconductors [3–5]. In general, the electro-
magnetic fields have been directed to satisfy a diverse set of
ll rights reserved.
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requirements, ranging from the induction of melt convection deep
in the solidifying liquid pool to the dampening of turbulence in
melt convection. These effects have been explored in both metals
and semiconductor industries, and the resulting improvements in
both process control and product quality have been encouraging.
In general, the application of magnetic fields has been shown to
stabilize both flow and temperature oscillations in the melt [6],
and thereby represents a promising opportunity to obtain an im-
proved crystal quality. Keeping this perspective in view, the effects
of a magnetic field on melt convection were numerically investi-
gated by several authors, primarily focusing on the aspects of
buoyancy- and surface tension-driven convection [7–11]. These
studies, however, dealt primarily with the effects of a magnetic
field on the fluid flow and did not include the effects of phase-
change. Kaddeche et al. [12] presented a numerical study on
macrosegregation in a horizontal Bridgman configuration under
various fluid flow conditions and with the assumption of a planar
solid–liquid interface moving at a constant velocity. Fedoseyev
et al. [13] studied the transport phenomena associated with mag-
netic field suppression of semiconductor melt flow in crystal
growth processes, and were amongst the first group of researchers
to clearly detail the boundary layer formation near rigid walls un-
der those conditions. It was revealed that sufficiently strong mag-
netic fields could significantly damp the convection in the melt,
resulting in a planar solidification front.

The idea of utilizing combined electro-magneto-hydrodynamic
(EMHD) influences in controlling melting/solidification processes
has been a natural extension of the successful exploitation of mag-
netic fields in advanced materials processing applications [14–16],
outlined as above. As such, it has been well known for decades that
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Nomenclature

a coefficient in velocity profile
b coefficient in temperature profile
Bo magnetic field strength, A m�1

Cp specific heat, J kg�1 K�1

D melting parameter
e square root of the ratio of dimensionless electric field

strength to Ec Eckert number
E dimensionless electric field strength
Eo electric field strength, kg m s�3 A�1

Ec Eckert number
î; ĵ; k̂ unit vectors in x-, y-, z-directions respectively
H latent heat of liquid/solid phase transformation, J kg�1

Ht Hartmann number
J electric current density, A m�2

k thermal conductivity, W m�1 K�1

L characteristic length of the plate in x-direction, m
M dimensionless magnetic field strength
_m melt generation rate per unit area, kg s�1 m�2

Nu Nusselt number
Pe Peclet number
Pr Prandtl number
Re Reynolds number
Ste Stefan number
T; T dimensional and dimensionless temperature
U; U dimensional and dimensionless horizontal velocity

component
V ; V dimensional and dimensionless vertical velocity compo-

nent
v velocity vector of flow
�x; x dimensional and dimensionless axial coordinate
�y; y dimensional and dimensionless vertical coordinate

Greek symbols
a thermal diffusivity, m2 s�1

�d; d dimensional and dimensionless boundary layer thick-
ness

D ratio of thermal to momentum (hydrodynamic) bound-
ary layer thickness

g normalized coordinate with respect to hydrodynamic
boundary layer thickness

j ratio of liquid to solid thermal conductivity
k ratio of maximum temperature difference in solid to

that in liquid
m kinematic viscosity, m2 s�1

x normalized coordinate with respect to dt
f normalized interfacial velocity
q mass density, kg m�3

r electrical conductivity, S m�1

Subscripts
f, F liquid phase, melt surface
o condition in solid at infinite distance from the melting

interface
1 free stream condition
m momentum (hydrodynamic) boundary layer
s solid phase
t thermal boundary layer

Superscript
0 parameter in absence of electro-magnetic field
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fluid flow, and hence convective heat transfer, could be signifi-
cantly influenced if an electrically conducting fluid is subjected
to combined electro-magnetic influences. However, detailed math-
ematical models on the interaction of the electric, magnetic, ther-
mal, gravitational and pressure fields have not been reported in the
literature, till recent times [16–19]. In fact, the complete EMHD
models in the context of melting/solidification transport have been
solved in the literature only for a restricted class of problems. A
major subclass of the EMHD models employed for the analysis of
melting/solidification problems in the literature has either con-
cerned with incompressible fluid flows under the influence of an
externally imposed magnetic field alone, while neglecting any
electric fields, or has concerned with incompressible fluid flows
under the sole influence of an externally imposed electric field
while neglecting the presence of any magnetic fields. Not only that,
most of the above-mentioned studies have been based on full-scale
numerical models, which often appear to be over-complicated in
nature in providing fundamental insights into the strongly inter-
connected and somewhat non-trivial physical mechanisms that
govern the influences of combined electro-magnetic fields on melt-
ing/solidification processes of conducting materials. Nevertheless,
despite such complicated physical issues being involved, a number
of interesting analytical or semi-analytical studies on the influence
of magnetic fields on convective transport have also been reported
in the literature. Most of these analytical investigations have been
based on either the similarity techniques or the approximate inte-
gral methods [20–22]. It is interesting to mention here that these
techniques have successfully been employed to independently
study the melting heat transfer over flat plates [23,24], although
without concerning the use of any magnetic or electric fields. Seen-
iraj and Kannan [25], for the first time, offered with an integral
analysis of the coupled problem of hydromagnetic flow and melt-
ing of an electrically conducting liquid over a slab. For the conve-
nience in mathematical analysis, they neglected the effects of
Joule heating in formulating the energy conservation equation. In
reality, however, such effects may turn out to be immensely criti-
cal, especially for the cases in which the superheat in the melt oc-
curs to be relatively low. Moreover, their work did not consider the
influence of any externally applied electric field, which, along with
the magnetic field, might influence the resultant transport pro-
cesses in a rather involved manner, with possible non-trivial impli-
cations on the rate of heat transfer associated with the melting
process.

Aim of the present work is to devise a semi-analytical model
based on the boundary layer integral method, for analyzing the
combined effects of magnetic and electric fields on the melting of
a flat horizontal slab, under the laminar forced flow of a conducting
liquid. Besides their theoretical implications, such semi-analytical
solutions hold their critical significance in a sense that these are
likely to provide valuable detailed insights on the characteristics
of the overall solution, without necessitating involved computa-
tional efforts. Not only that, such semi-analytical solutions can also
be utilized to check the accuracy, convergence and effectiveness of
various full-scale numerical computation methods and to improve
their differencing schemes, grid generation ways and so on. Keep-
ing this in perspective, a simplified mathematical model is consid-
ered in the present study, by considering identical thermo-physical
properties in solid and liquid phases. The coupled boundary layer
equations are obtained by employing the von Karmann approxi-
mate integral approach, and the resultant non-linear systems of or-
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dinary differential equations are solved by employing simple
numerical schemes.

2. Mathematical modeling

2.1. Model description and problem formulation

The physical situation addressed in the present analysis deals
with a model problem, as schematically depicted in Fig. 1. As
shown in the figure, the free stream flow of a molten pure material
takes place over a solid layer of the same, with no imposed pres-
sure gradients in the fluid. The free stream velocity and tempera-
ture of the liquid are U1 and T1, respectively, and the bulk
temperature of the solid is Ts. At steady state, the interface is at
the melting temperature of the material ðT f Þ. The solid melts at a
constant rate of VF locally, due to the hot fluid flowing over it. This
continuous depletion of solid is adjusted by feeding un-melted
material at a local rate of V s from the bottom. A magnetic field of
strength Bo is imposed along y-direction, while an electric field of
strength Eo is imposed orthogonal to the magnetic field and to
the flow direction.

For mathematical analysis, the following major assumptions are
made:

(1) The liquid is weakly conducting and does not carry any free
charge.

(2) The strengths of the magnetic and electric fields are con-
stants. Further, the solid medium is considered to be of
semi-infinite extent, following the works of the earlier
researchers. Because of this, the volumetric heat generation
(i.e., the rate of heat generation per unit volume) in the solid
tends to zero in a limiting sense, consistent with the mathe-
matical model considered here. In practice, any heat gener-
ation within the solid of finite extent will merely serve to
increase the bulk temperature, or for that matter the tem-
perature gradient inside the solid, without disturbing the
other aspects of the present model.

(3) Thermo-electric effects like Peltier and Seeback effects are
neglected.

(4) The flow is two dimensional, laminar, steady and
incompressible.

(5) Induced magnetic and electric fields are negligible in
strength.

(6) The thermo-physical properties of the material are constant.

Since the problem involves a combination of electric and magnetic
fields, a unified EMHD theory [17] is employed to derive the gov-
erning differential equations. The original form of the equations
Bo

fV

,U T∞ ∞   

sT (y →

Y

X

Fig. 1. Schematic diagram of the proble
is involved and is not presented here. The simplified forms,
obtained after applying the assumptions mentioned as above, are
presented below:

1. Continuity equation

r �~v ¼ 0 ð1Þ

where ~v is the velocity at any point in the liquid, given by
~v ¼ Uîþ Vĵ.

2. Momentum equation

qð~v � rÞ~v ¼ �rP þ lr2~vþ ð~J �~BÞ ð2Þ

where ð~J �~BÞ is the electromagnetic (Lorentz) force vector,
which is a combined consequence of the magnetic field
ð~B ¼ Bo ĵÞ and the electric field ð~E ¼ Eok̂Þ. The net electromotive
vector is given by~e ¼~Eþ~v�~B, which on simplification becomes
~e ¼ ðEo þ U � BoÞk̂, so that the current density is obtained as
~J ¼ r~e.

3. Energy equation

ð~v � rÞT ¼ ar2T þ S ð3Þ

where S ¼ ð~J �~eÞ=qCPf .

Eqs. (1)–(3) are further simplified by employing the standard
boundary layer assumptions, and are subsequently non-dimen-
sionalized by employing the following normalization parameters
(various symbols are explained in the Nomenclature section):

x ¼
�x
L
; y ¼

�y
L
; dm ¼

�dm

L
; dt ¼

�dt

L
; D ¼ dt

dm
; x ¼ y

dt
;

g ¼ y
dm

; U ¼ U

U1
; V ¼ V

VF
; f ¼ VF

U1
; h ¼ T � T f

T1 � T f
;

hs ¼
Ts � To

T f � To
; k ¼ T1 � T f

T f � To
; Re ¼ U1L

mf
; Pr ¼ mf

af
;

Pe ¼ Re � Pr; Nux ¼
h�x
kf
; Stef ¼

Cpf ðT1 � T f Þ
H

;

Stes ¼
CpsðT f � ToÞ

H
; D ¼ Stef

1þ Stes
; Ec ¼ U2

1

Cpf ðT1 � T f Þ
¼ U2

1
H
� 1

Stef
;

j ¼ kf

ks
; M ¼ BoL

ffiffiffiffiffi
rf

l

r
1ffiffiffiffiffiffi
Re
p ¼ Htffiffiffiffiffiffi

Re
p ;

E ¼ Eo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf L

U1qCpfðT1 � T f Þ

s
¼ Eo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf L

U1qH

s ffiffiffiffiffiffiffiffi
1

Stef

s

Using the above non-dimensional numbers, the governing differen-
tial equations for the momentum and the thermal boundary layers
become:
Eo

mδ

tδ

U , T 

fT

) T  −∞ =
SOLID

o

m (electric field is in z-direction).
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1. Continuity

oU
ox
þ f

oV
oy
¼ 0 ð4Þ

2. Momentum

U
oU
ox
þ fV

oU
oy
¼ 1

Re
o2U
oy2 þM2ð1� UÞ ð5Þ

3. Energy

U
oh
ox
þ fV

oh
oy
¼ 1

Pe
o2h
oy2 þ ðEþ U �M

ffiffiffiffiffi
Ec
p
Þ2 ð6Þ

It may be noted here that although the electric field produces a
body force on the fluid, the same does not show up in the momen-
tum equation because it is constant, and can be eliminated by suit-
ably defining a modified pressure. The only external force that
affects the fluid motion is the electromagnetic (Lorentz) force. In
the energy equation, the source term represents the effects of Joule
heating caused by the flow of current due to the imposed electric
field and also the current generated due to the magnetic flux.
The above system of equations is consistent with the following
interfacial energy balance condition:

kf
oT
oy

����
y¼0þ
¼ Hqf VF þ ks

oT
oy

����
y¼0�

ð7Þ

It can also be noted here that in the absence of any electric field in
the solid, the solution of the temperature distribution in the solid
may be derived according to the procedure outlined in [25], to yield

hs ¼ exp jk
Stes

Stef
Pefy

� �
for �1 6 y 6 0 ð8Þ

For obtaining the temperature distribution in the liquid, an integral
analysis is performed, involving the systems of Eqs. (4)–(7), as pre-
sented in the subsequent section.

2.2. Integral analysis

For deriving the solutions by employing the boundary layer
integral method, the governing differential equations (4)–(6) are
first integrated inside their respective boundary layers, to obtain
their corresponding integral forms, as

fðV � 1Þ ¼
Z dm

0

oU
ox

dy ð9Þ

d
dx

Z dm

0
Uð1� UÞdy

� �
� f ¼ 1

Re
oU
oy

����
y¼0
�
Z dm

0
ð1� UÞM2 dy ð10Þ

d
dx

Z dt

0
Uð1� hÞdy

� �
� f ¼ 1

Pe
oh
oy

����
y¼0
�
Z dt

0
Eþ UM

ffiffiffiffiffi
Ec
p� �2

dy ð11Þ

For evaluating the integrals appearing in Eqs. (9)–(11), the dimen-
sionless velocity and temperature profiles within the boundary
layer are first approximated as

UðgÞ ¼ a0 þ a1gþ a2g
2 þ a3g

3 ð12aÞ
hðgÞ ¼ b0 þ b1xþ b2x

2 þ b3x
3 ð12bÞ

The pertinent boundary conditions on velocity are as follows:

Uð0Þ ¼ 0; Uð1Þ ¼ 1;
oU
og

����
g¼1
¼ 0;

D
oh
ox

����
x¼0

oU
og

����
g¼0
¼ DPr

o2U
og2

�����
g¼0

þM2PeDd2
m ð13a—dÞ

The boundary condition given by Eq. (13d) has been derived by not-
ing that Eq. (5) needs also to be satisfied at the solid/liquid interface,
in conjunction with Eq. (7). Similarly, the boundary conditions for
temperature can be derived from Eqs. (6) and (7), to yield

hð0Þ ¼ 0; hð1Þ ¼ 1;
oh
ox

����
x¼1
¼ 0;

D
oh
ox

����
x¼0

� 	2

¼ o2h
ox2

�����
x¼0

þ EPeDd2
t ð14a—dÞ

Using the boundary conditions (13) and (14), various coefficients
appearing in Eq. (12) are obtained as

a0 ¼ 0; a1 ¼ /ð6þM2Red2
mÞ; a2 ¼ 3� 2a1; a3 ¼ a1 � 2

ð15a—dÞ

b0 ¼ 0; b1 ¼
2
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
Dþ DPefEDdmg2

4

s
� 1

0
@

1
A;

b2 ¼ 3� 2b1; b3 ¼ b1 � 2 ð16a—dÞ

where / ¼ DPr
Db1þ4DPr. The expression for the dimensionless interfacial

velocity, f, can be found out by using Eqs. (7) and (12), which on
rearrangement, yields

f ¼ b1D
PeDdm

ð17Þ

Expression (12a), along with the coefficients specified by Eq. (15d),
can subsequently be employed to evaluate the integrals appearing
in Eqs. (9) and (10), to obtain an ordinary differential equation of
the following form:

d
dx
½c1dm þ c2d

2
m þ c3d

3
m� ¼

1
Redm

6/þ Db1

DPr

� 	
þM2dm

2
ð/þ 1Þ

þ 1
12

M4Red3
m/ ð18Þ

The parameters c1, c2, c3, as appearing in Eq. (18), are detailed in
Appendix A.

Unlike the momentum equation, the energy equation cannot be
integrated in a trivial and straight forward manner. This is because
of the fact that a disparate thermal behavior characterizes high
Prandtl number and low Prandtl number fluids, on account of the
distinctive relative thicknesses of the momentum and the thermal
boundary layer in the two cases. These two limiting cases, there-
fore, are addressed separately in the subsequent sections.

2.2.1. Case 1: Pr� 1 (D� 1)
For liquids with Prandtl number much greater than unity

(Pr� 1), the momentum boundary layer is substantially thicker
than the thermal boundary layer. Under these conditions, the
velocity profile given by Eq. (12a) can be considered to prevail over
the entire span of the thermal boundary layer, so that Eq. (11)
yields
d
dx
½c1dm þ c2d

2
m� ¼

b1ð1þ DÞ
PeDdm

þ Ec½d1dm þ d2d
3
m þ d3d

5
m� ð19Þ

On defining additional parameters e such that e ¼
ffiffiffiffi
E
Ec

q
, the terms c1,

c2, d1, d2, d3, as appearing in Eq. (19), can be completely specified, as
detailed in Appendix A.

2.2.2. Case 2: Pr� 1 (D� 1)
For liquids with low Prandtl number (Pr� 1), the momentum

boundary layer is much thinner in comparison to the thermal
boundary layer. As a consequence, the velocity profile given by
Eq. (12a) prevails only over a small portion of the thermal bound-
ary layer, outside which the velocity is effectively same as the free
stream velocity. Taking this fact into consideration, Eq. (11) yields
d
dx
½c1dm þ c2d

2
m� ¼

b1ð1þ DÞ
PeDdm

þ Ec½d1dm þ d2d
3
m þ d3d

5
m� ð20Þ
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The parameters c1, c2, d1, d2, d3, as appearing in Eq. (20), are detailed
in Appendix A.

2.3. Numerical considerations and post-processing

The coupled non-linear ordinary differential equations govern-
ing the variations of dm and D (as given by Eqs. (18) and (19)/
(20)) are numerically solved by employing the shooting technique.
The boundary value problem is converted into a system of initial
value problems, which is solved by employing the fourth order
Runge–Kutta method. The non-linear algebraic variations of the
dependent variables at each step are handled by employing an iter-
ative error minimization approach, without involving any deriva-
tive calculations. This approach is rather insensitive to the choice
of the initial guess, and is found to yield converged solutions, with-
in a relative error tolerance of as small as 10�6. From the variations
of dm and D, the melt generation rate can be found out as _m ¼ fqf ,
where the parameter f may be calculated using Eq. (17). Another
important parameter, which gives a quantitative estimate of the
strength of convective heat transfer, is the Nusselt number. The lo-
cal Nusselt number is defined as Nux ¼ x

dt

oh
ox

��
x¼0 ¼

xb1
Ddm

. The ratio of
the local Nusselt number obtained with and without the electro-
magnetic fields can be described as

Nux

Nu0
x

¼ xb1

DdmNu0
x

ð21Þ

This ratio is of immense practical significance, since it assesses the
effectiveness of the electrical and the magnetic fields on the overall
rate of heat transfer associated with the melting process. In the
numerical implementation, initially the results are generated with-
out the applied fields to get Nu0

x . Then the external electro-magnetic
field is applied and the new results are obtained. At each location
Nux is divided by Nu0

x obtained from the previous results to obtain
the ratio of Nusselt numbers.
Fig. 2. Comparison of values of the non-dimensional interfacial velocity, f, as calculate
3. Results and discussion

Apart from the material properties, the three major parameters
which govern the behavior of melting are the degree of liquid
superheat T1 � T f , the strength of electric field (Eo), and the
strength of magnetic field (Bo). The effects of these parameters
are studied for both high and low Prandtl number liquids, in terms
of the effects of the corresponding non-dimensional numbers on
the melting behavior.

3.1. Model validation

Results from the present model are first validated against the
numerical results reported by Seeniraj and Kannan [25]. However,
since these authors considered the effects of magnetic field alone
without involving any electrical field, the electric field strength
(E) employed in the present study is set to zero, so as to render
the results from the two studies effectively comparable. The com-
parison is shown in Fig. 2, which shows a fairly good agreement be-
tween the two model predictions. It is interesting to note that
there is a perceptible (although minor) deviation between the
two predictions, for non-zero strengths of the magnetic field. This
can be attributed to the fact that the analysis of Seeniraj and Kan-
nan [25] neglected the Joule heating effects, while those are aptly
accounted for in the present model. Although these effects may
be rather of limited consequence in presence of a magnetic field
alone, these may indeed turn out to be of significant consequence
in presence of combined electro-magneto-hydrodynamic influ-
ences, as evidenced from our subsequent analysis.

With the preliminary assessment of the model in presence of
magnetic fields alone, simulation studies are subsequently exe-
cuted to bring out the combined consequences of the electrical
and the magnetic fields on the overall melting process. These stud-
ies are discussed in details in the subsequent sections.
d from the present model with the results reported by Seeniraj and Kannan [25].



Table 1
Numerical values of non-dimensional parameters (unless mentioned)

Parameter Numerical value

Re 10,000
Stes 1
Stef 1
Pr 100 (Pr� 1)

0.001 (Pr� 1)
U2
1

H 1

Eo

ffiffiffiffiffiffiffiffiffiffi
rf L

U1qH

q
0.3

Ht 30
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3.2. Case studies with combined electro-magneto-hydrodynamic
influences

3.2.1. Effect of liquid superheat with combined electro-magnetic fields
The effect of variations in the degree of superheat is studied by

varying Stef, since they are directly proportional to each other. The
numerical values of the different parameters used to execute this
analysis are listed in Table 1. Fig. 3 demonstrates the effect of
the degree of superheat in the liquid on various aspects of the
melting process, for Pr� 1. It can be seen (refer to Fig. 3a–c) that
an increase in the degree of superheat does not affect the ratio of
the thermal to momentum boundary layer thickness (D) or the
momentum boundary layer thickness (dm), but enhances the rate
of melting (f). It is important to note in this context that the ther-
mal boundary layer thickness is a combined consequence of the
competing influences of the thermal advection and transverse dif-
fusion, for a given rate of thermal energy generation (Joule heat-
ing). Since both the advective and diffusive effects scale linearly
with the degree of superheat, the thermal boundary layer thickness
is virtually unaffected with a change in the degree of superheat.
Fig. 3. Effect of degree of superheat for liquid of Pr�
With an added superheat, however, a major proportion of the heat
flux available to the liquid gets consumed in the form of latent
heat, as a consequence of an enhanced rate of melting. The plot
of the ratio of Nusselt numbers (see Fig. 3d) shows that the Nusselt
number remains virtually unaffected with degree of superheat.
However, its increasing trend along axial direction suggests that
the effect of the electro-magnetic field becomes more prominent
as one moves away from the leading edge of the slab. The ratio
of the Nusselt number with and without electro-magnetic field
can be expressed as ðd0

t =dtÞðb1=b0
1Þ. While the ratio ðb1=b0

1Þ is hardly
affected by electro-magnetic field, the ratio ðd0

t =dtÞ increases with
increase in the strength of the electro-magnetic field. This is be-
cause of the fact that enhanced electromagnetic field strength
causes more heat generation within the boundary layer, thereby
decreasing the magnitude of dt. At the leading edge, there is virtu-
ally no heat generation, and accordingly the ratio of Nusselt num-
bers becomes almost same as unity. However, as we move away
from the leading edge, the effect of the electro-magnetic field be-
comes progressively more pronounced, and the ratio of Nusselt
numbers consequently increases. However, neither b1 nor dt is af-
fected by degree of superheat, which explains the fact that the ratio
of Nusselt numbers remain unaffected by degree of superheat.

Fig. 4 depicts similar variations as those exhibited in Fig. 3, but
for the case of Pr� 1. Since the influences of the degree of super-
heat are not very much related to the relative magnitudes of the
momentum and thermal diffusivities, the variations in boundary
layer thickness, melting rate, and the Nusselt number are observed
to be virtually identical in a qualitative sense for both cases of high
and low Prandtl number fluids, as observed by comparing Figs. 3
and 4. However, the distinctive influences of high and low Prandtl
number fluid become conspicuous with regard to the implications
in the variations of the electrical and magnetic field strengths in
certain aspects, to be discussed subsequently.
1, on (a) D, (b) dm, (c) f, (d) ratio of Nux to Nu0
x .



Fig. 4. Effect of degree of superheat for liquid of Pr� 1, on (a) D, (b) dm, (c) f, (d) ratio of Nux to Nu0
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3.2.2. Effect of electric and magnetic fields
Apart from degree of superheat, the electric fields and magnetic

fields are likely to bear significant consequences with regard to the
transport phenomena associated with the melting process. Figs. 5
and 6 depict the combined influences of the electric and magnetic
fields on the various characteristics of the melting process, for
Pr� 1 and Pr� 1 respectively. All these variations are plotted cor-
responding to an axial location given by x = 0.5. It is important to
recognize in this context that the magnetic field influences the
momentum and thermal energy transport simultaneously. How-
ever, the electric field does not explicitly influence the momentum
transport, although it significantly influences the thermal energy
transport by contributing to the Joule heating. Accordingly, it is re-
vealed from Fig. 5a and b that the thermal and hydrodynamic
transport are almost decoupled. A weaker flow field that is estab-
lished on account of the application of magnetic fields becomes
responsible for an effective retardation in the advective transport
of momentum, leading to a thickening of the hydrodynamic
boundary layer thickness. While the effects of variations in M (or
equivalently Ht) are exhibited to be prominent only for their impli-
cations on dm, variations in E additionally influence the values of D,
melting rate and ratio of Nusselt numbers, as evident from Fig. 5,
because of the explicit contributions of the electric field on Joule
heating.

For Pr� 1 (see Fig. 6), the effects on the melting parameters are
found to be prominent for both the electric and magnetic fields, in
sharp contrast to the cases with Pr� 1. It should be noted that
even though the thermal gradient is less in case of Pr� 1 (because
of thicker thermal boundary layer), the increased value of thermal
conductivity causes higher heat flux to flow into the solid, resulting
in higher rates of melting. This is aptly justified from Figs. 5c and
6c, which reveal considerably higher rates of melting for Pr� 1.
Appreciably high rates of melting for Pr� 1 effectively ‘pump’
fresh layers of molten liquid into the boundary layer, so that the
rates of momentum transfer are also implicitly influenced. Accord-
ingly, the melting characteristics of low Prandtl number fluids are
simultaneously influenced by both M (or equivalently Ht) and E.

With regard to the variations in Nusselt number, it first needs to
be recognized that the Nusselt number is nothing but a non-
dimensional measure of the convective heat flux, which strongly
depends on the volumetric rate of heat generation due to Joule
heating. From Eq. (6) it is revealed that the above scales as,
S � Eþ U �M

ffiffiffiffiffi
Ec
p� �2

. The strength of this volumetric heating not
only depends on the strengths of the electric and the magnetic
fields, but also on their relative algebraic signs. When both E and
M (or equivalently Ht) are of the same sign, their combined influ-
ences enhance the strength of volumetric heating. On the other
hand, when these are of opposite sign, the strength of the source
weakens. The strength of the source is a minimum when neither
the electric field nor the magnetic field is applied. With high
strengths of this source, an enhanced rate of volumetric heat gen-
eration tends to overweigh the effects of thermal diffusion, so as to
render the thermal boundary layer thinner. Thinner the thermal
boundary layer, steeper is expected to be the temperature gradient
within the same. As a result, the heat flux available for the solid–
liquid phase transition increases, which implies an augmentation
in the rate of melting. This, in turn, is accompanied with an
enhancement in the Nusselt number, all other conditions remain-
ing unaltered. Thus, a combination of the strongest magnetic field
and the strongest electric field, within the chosen regime, results in
the maximum possible rate of melting and also the maximum pos-
sible value of Nusselt number, provided both are of the same sign,
as apparent from Fig. 6c and d. Interestingly, the rate of melting
and the overall rate of convective transport turn out to be some-
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what less when fields of the same strength but of opposite alge-
braic sign are employed, for reasons mentioned earlier. When the
magnetic and electric fields act in tandem and are of opposite sign,
the maximum thermal boundary layer thickness (or equivalently,
the minimum rate of melting) occurs when jEj � M

ffiffiffiffiffi
Ec
p��� ���, which

is essentially a scaling limit at which the volumetric energy gener-
ation rate on account of Joule heating tends to zero.

4. Conclusions

In this paper, a semi-analytical approach has been outlined to
analyze the fundamental physical principles of controlling various
aspects of melting in forced flows through combined electro-mag-
neto-hydrodynamic influences. This study has been motivated by
the fact that the application of electro-magnetic fields has now be-
come widely practiced in the materials processing industries, so as
to obtain improved product qualities through the imposition of
stringent process control mechanisms. Although, because of dis-
tinctive development histories and different quality requirements,
the metal and semiconductor researchers have contrasting focuses
in their research on melting/solidification processing in electro-
magnetic fields, the fundamental design principles to be applied
Eq. (18) Eq. (19) Eq. (20)
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are expected to be essentially the same. Metals researchers, while
perfecting the standard practices, are continuously exploring the
possibilities of extending the use of the electromagnetic fields in
near-net-shape casting, thin-gauge casting, and other novel casting
processes. On the other hand, the crystal growers are routinely pre-
occupied with adapting electromagnetic stirring in semiconductor
melts while developing more effective and efficient magnetic
damping field configurations. The present study, through its funda-
mental physical considerations, is expected to cater these diverse
requirements through a unified approach. From the simulation
case studies undertaken on the basis of the boundary layer integral
model developed here, the following important conclusions can be
drawn in this regard:

1. The effect of the applied electric and magnetic field is inconse-
quential at the leading edge of the plate and becomes progres-
sively more important as one traverses along the length of the
slab. Thus, the ratio of Nusselt number with and without the
employment of electromagnetic field increases almost linearly
along the slab length.
2. Increase in degree of superheat of the liquid augments the rate
of melting. However, the degree of superheat in the liquid
appears to be rather inconsequential in influencing the hydro-
dynamic and the thermal boundary layer thicknesses.

3. Appreciable influences of the electric and magnetic fields can be
observed with regard to the variations in the local boundary
layer thicknesses, melting rate and the Nusselt number. While
favorable combinations of the electric and the magnetic fields
(both being of same algebraic sign) may improve the rate of
melting and the consequent rate of convective transport to a
significant extent, their opposing combinations with the electric
and magnetic fields of contrasting sign can reduce the corre-
sponding rates to considerable proportions. The underlying
influences are much more dramatic for low Prandtl number flu-
ids than the high Prandtl number ones. In practice, therefore,
judicious combinations of the magnetic and electric field can
be employed to control the rate of melting and the pertinent
rate of convective heat transfer, for a chosen type of phase
changing material.
Appendix A. Specification of parameters appearing in Eqs. (18)–
(20)
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